La Resistenza elettrica in Alternata

AUTORE Prof. : Ing. FERDINANDO FUSCO

INTRODUZIONE

Scopo dell'unità didattica è la conoscenza degli studenti sulla dipendenza della resistenza dei conduttori al variare della frequenza delle correnti circolanti. Tale relazione tra resistenza e frequenza sarà evidenziata con un software di simulazione. Inoltre, saranno illustrati i vari passi necessari per effettuare ulteriori prove di simulazione sull'argomento trattato.

OBIETTIVI DELLA SIMULAZIONE STRUMENTO Calcolo della resistenza e visualizzazione grafica della distribuzione di corrente sulla sezione di un conduttore cilindrico, per fissata sezione e frequenze di prova

SOFTWARE MAXWELL SV

<u>1. Cenni teorici sull'effetto pelle</u>

<u>2. Le prove effettuate</u>

<u>3. Utilizzo del simulatore</u>

• In un conduttore di sezione uniforme, attraversato da corrente continua, la densità di corrente *J* è uniforme.

• In alternata, invece, ogni elemento infinitesimo *dS* di sezione è interessato da una densità di corrente *J*(*r*,*t*) crescente dal centro del conduttore verso la periferia.

• Ogni filo di sezione *dS*, con i quali si può immaginare di suddividere il conduttore, è interessato dal campo magnetico variabile prodotto dai fili corrispondenti alle sezione circostanti.

• Il campo magnetico, per la legge di Lenz, produce sui conduttori di sezione *dS* una forza elettromotrice che si oppone al passaggio di corrente.

$$e(t) = - \frac{d\phi}{dt}$$

• I conduttori di sezione *dS* più interni sono concatenati al massimo con tutto il flusso prodotto dai rimanenti conduttori.

• Le sezioni *dS* più periferiche risentono di meno dell'effetto perché più distanti dal centro.

- Il risultato è che l'interno del semiconduttore offre una impedenza più alta della periferia.
- Si avrà quindi un maggiore addensamento di correnti nelle zone periferiche.
- La resistenza di un conduttore di raggio r per effetto pelle dipende approssimativamente dalla frequenza secondo la:

$$\mathbf{R} = \mathbf{R}_0 \left[1 + r \sqrt{(\omega \mu \sigma)} \right]$$

 R_0 resistenza in continua, μ permeabilità magnetica, σ conducibilità del conduttore.

SPESSORE DI PENETRAZIONE

• Si dimostra che l'effetto della variazione di resistenza in funzione della frequenza è legato al rapporto tra il raggio **r** del conduttore e il parametro δ "spessore di penetrazione" dipendente dal materiale:

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

SPESSORE DI PENETRAZIONE

Per il rame:

- $\mu = 4 \pi 10^{-7} \text{ H/m}$
- $\sigma = 5.8 \ 10^7 \ \text{S/m}$

e con f = 50 H_Z risulta $\delta_{Cu}(50H_Z) \cong 9,3 \text{ mm}$

SPESSORE DI PENETRAZIONE

In pratica si parla di effetto pelle quando:
r > (4 ÷ 5) δ

Con r raggio del conduttore.

• Con r < δ l'aumento di resistenza del conduttore, all'aumentare della frequenza, è praticamente nullo.

SPESSORE DI PENETRAZIONE

 Andamento del rapporto tra la resistenza in alternata e la resistenza in continua in funzione del rapporto r/δ.

LE PROVE EFFETTUATE

• Le simulazioni effettuate riguardano conduttori cilindrici di rame con raggio: $\mathbf{r} = 4 \text{ mm}$ $\mathbf{r} = 6 \text{ cm}$ • Le frequenze considerate sono: $f = 0 H_7 (DC)$ $f = 50 H_7$ (frequenza industriale) $f = 500 H_{7}$ $f = 5000 H_7$

• Il valore della corrente impressa per tutte le prove:

I = 150 A

LE PROVE EFFETTUATE

Per ogni prova effettuata:

• il programma di simulazione ha raffigurato la distribuzione della densità di corrente *J*(*r*).

• Sono stati calcolati i valori delle resistenze corrispondenti ai diversi valori delle frequenze imposte.

Per il calcolo è stata adottata la relazione:

$$R = \frac{P_j}{\int_{S} J^2 dS} = \frac{P_j}{I^2}$$

con P_j potenza persa nel conduttore per effetto joule e I valore efficace della corrente imposta nel conduttore.

LE PROVE EFFETTUATE

<u>CONFRONTO</u>

• Confrontando i risultati delle due serie di prove si vuole dimostrare la veridicità della dipendenza del rapporto **Rac/Rcc** dal rapporto r/δ .

- Rac resistenza in alternata
- Rcc resistenza in continua
- *r* raggio del conduttore
- $\boldsymbol{\delta}$ spessore di penetrazione

I SERIE DI PROVE $r = 4 mm f = 0 H_Z$

I SERIE DI PROVE $r = 4 \text{ mm } f = 0 \text{ H}_{Z}$

• Integrale o Perdite per effetto joule, operato dal simulatore sulla sezione del conduttore, della potenza persa per unità di superficie.

Field	×		
Scl Scl	:	3.87848216306546 Integrate(ObjectFaces(object1), EM Loss)	

• Dividendo il valore dell'integrale calcolato sulla sezione del conduttore per il quadrato della corrente, avrò la resistenza Rcc.

$$Rcc = \frac{\rho \cdot l}{s}$$

Field	<u>- ×</u>		
Scl		0.000344753970050263	
SCI	8.	Integrate(UbjectFaces(object1), EM Loss)	
201		Integrate(ObjectFaces(objecti), in Loss)	

Rcc = 344,753 10^{-6} Ω

I SERIE DI PROVE r = 4 mm f = 50 H_z δ = 9,3 mm

A **50** H_Z la densità di corrente non è più uniforme

I SERIE DI PROVE r = 4 mm f = 500 H_z δ = 2,9 mm

A 500 H_Z la variazione di Rac e nell'ordine del 2.10⁻⁵

I SERIE DI PROVEr = 4 mm f = 5000 H_z δ = 0,9 mm

A 5000 H_z la variazione di Rac è nell'ordine del 5 $\cdot 10^{-4}$. Rac/Rcc \cong 2.4

Indice

I SERIE DI PROVE $r = 4 \text{ mm } f = 5, 50, 500, 5000 \text{ H}_Z$

<u>CONCLUSIONI</u> sulla prima serie di prove

• A conclusione della prima serie di prove, come già precedentemente riportato, possiamo affermare che a 5000 Hz r > 4 δ e il rapporto Rac/Rcc > 2.

II SERIE DI PROVE $r = 6 \text{ cm } f = 0 \text{ H}_Z$

In DC la densità di corrente è perfettamente uniforme

Indice

II SERIE DI PROVE r = 6 cm f = 50 H_z δ = 9,3 mm

A 50 H_Z è già molto evidente la non uniformità di *J*. Rac/Rcc \cong 5

II SERIE DI PROVE r = 6 cm f = 500 H_z δ = 2,9 mm

A 500 H_z la variazione di R è nell'ordine del 1·10⁻⁵. Rac/Rcc \cong 15

Indice

II SERIE DI PROVE r = 6 cm f = 5000 H_z δ = 0,9 mm

A 5000 H_Z la variazione di R è nell'ordine del 5·10⁻⁵. Rac/Rcc \cong 56. E' evidente l'addensamento della corrente sullo strato superficiale.

II SERIE DI PROVE

Andamento della Rac(f) al variare di f tra $0 \div 5000$ Hz per conduttore cilindrico di rame con raggio r = 6 cm.

CONCLUSIONI

• Confrontando la seconda serie di prove con i risultati ottenuti dalla prima, si può osservare che per r= 6 cm, già a 50 Hz il rapporto r/ δ > 6 e Rac/Rcc > 5.

• Resta quindi valido quanto precedentemente detto a proposito del rapporto esistente tra r/ δ e Rac/Rcc.

• In definitiva, per una data frequenza, quanto più grande è il rapporto r/ δ tanto maggiore sarà l'effetto pelle e quindi tanto più inutilizzata la parte centrale del conduttore.

LA SIMULAZIONE CON IL SOFTWARE

MAXWELL SV

1. COME EFFETTUARE LE SIMULAZIONI CON MAXWELL SV

Per effettuare le simulazioni sull'argomento della lezione sono necessari i seguenti passi:

- 1. Apertura del software e nome progetto
- 2. Apertura progetto e scelta dei comandi esecutivi: SOLVER -
- 3. *Definizione del modello* (DRAW MODEL)
- 4. Disegno della sezione del conduttore cilindrico
- 5. Scelta del materiale COPPER -

2. COME EFFETTUARE LE SIMULAZIONI CON MAXWELL SV

- 6. Selezione e scelta della corrente elettrica applicata
- 7. Avvio della simulazione
- 8. Risultati della simulazione

APERTURA DEL SW E NOME PROGETTO

L'apertura del programma, l'ingresso alla sezione PROJECTS, il clic sul tasto NEW permettono di dare un nome al progetto, ad esempio <u>PROVA</u>.

APERTURA PROGETTO E SCELTA DEI COMANDI ESECUTIVI

	🕷 Maxwell SV "Prova"	
	Executive Commands	Model Solutions Convergence Profile
	Solver: Eddy Current Drawing: Electrostatic Magnetostatic Electrostatic Magnetostatic Eddy Aution Thermal AC Conduction Eddy Aution Setup Boundaries/Sources Setup Boundaries/Sources Setup Executive Parameters Setup Solution Options Solve	
	Help 1	Zoom In Zoom Out Fit All Fit Drawing Fill Solids Solution Monitoring
	Exit	
	Start A Maxwell	🔥 Maxwell Projects 🛛 🦉 Immagine3 - Paint 🖆 qqq 💦 🔥 Maxwell SV "Prova" IT 📏 💂 🚈 💭 🔤 20.40
Ape	rto il progetto	o, nella sezione SOLVER scegliere la funzione
EDC Autore: Ing. Fusco Ferdina	DY CURRENT	Ritorna
-		

DEFINIZIONE DEL MODELLO

Aperta la sezione DEFINE MODEL scegliere il modello DRAW. Si aprirà la schermata "2d Modeler" nella quale effettuare il disegno in sezione del CONDUTTORE.

DISEGNO DELLA SEZIONE DEL CONDUTTORE

 Cliccando sull'icona gialla del cerchio, è posso disegnare un cerchio rappresentativo della sezione del CONDUTTORE.
Salvo e chiudo la finestra.

Ritorna

SCELTA DEL MATERIALE

Cliccando sul tasto SETUP MATERIALS è possibile scegliere il materiale del CONDUTTORE, in questo caso il rame (copper).

Ritorna

1. SCELTA DELLA CORRENTE APPLICATA

Cliccando sul tasto SETUP BOUNDARIES/SOURCES è possibile selezionare l'oggetto CONDUTTORE e la <u>corrente da applicarvi.</u>

Ritorna

2. SCELTA DELLA CORRENTE APPLICATA

🛦 2D Boundary/Source Manager "prova"									
File Edit Assign Model Window Help									
		X I A Q Q X							
Boundary Assigned			+						
	Name sourcel Color Assign Cancel	Current Solid C Strand C Parallel Total C Density Magnitude 100 Phase 0 Options Functions Or	A deg ientation						
Maxwell 2D Version 9.0.065V Copyright 1984-2002 Ansoft Corporation									
nlo Alo	The meriden second to an	Enter	UNITS: mm	SNAPTO: vertex					
🚰 start 💧 🔥 Maxwell	🔒 Maxwell Projects 🛛 🍟 1	Immagine9 - P 📁 qqq 🔹 🔥	👠 Maxwell SV "Pr	🛝 2D Boundary/	IT <) 🕂 🕰 📑 💻 20.48				

Inserisco il valore di AMPIEZZA della corrente elettrica.

LANCIO DELLA SIMULAZIONE

Cliccando sul tasto SOLVE si avvia la simulazione

1. RISULTATI DELLA SIMULAZIONE

 Cliccare sul tasto POST PROCESSOR.
Nella nuova finestra scegliere PLOT/FIELD dal menu.
Nella finestra CREATE NEW PLOT scegliere di visualizzare "mag J" sul "surface object1" e con OK verrà visualizzata la <u>densità di corrente</u> sulla sezione del conduttore.

2. RISULTATI DELLA SIMULAZIONE

Visualizzazione della DENSITA' DI CORRENTE sulla sezione RETTA del conduttore

Fine Presentazione